
MATHEMATICS OF COMPUTATION, VOLUME 27, NUMBER 124, OCTOBER 19'73 

Polynomial Approximation of a Function and Its First 
Derivative in Near Minimax Norms* 

By Edgar A. Cohen, Jr. 

Abstract. Two near minimax norms for polynomial approximation are presented. They 
are designed for approximation of both a function and its first derivative uniformly by 
polynomials over a given finite interval. The first one is a convex combination of two 
integrals, one involving the function and the other the derivative, and the second is the sum 
of the square of the value of the function at one point and an integral involving the derivative. 
For any smooth function defined on a finite closed interval, one forms a generalized 
Chebyshev polynomial expansion to approximate both the function and derivative uniformly. 

1. Introduction. In any physical problem where it is possible to obtain both 
position and velocity data, one may want to approximate both sets of data by poly- 
nomials simultaneously. If it is desired to approximate the values uniformly, then one 
could modify the Chebyshev polynomial expansion [4, p. 170] in such a way as to take 
both of these features into account. In this paper, two norms will be presented, both of 
which are useful in this respect. In the first procedure, a convex combination of two 
integrals, one involving the function and the other involving the derivative, is con- 
sidered. In the second, the square of the value of the function at one point is added to 
an integral involving the derivative. Thus, in the first case, neither the function nor the 
derivative data are matched, while, in the second case, the fit is made to coincide 
with the function data at one arbitrary point of the interval. A simple example is 
given to illustrate the advantage of using the generalized Chebyshev polynomial 
expansions, with or without the constraint that the fit match the data at one point, over 
that of using a standard Chebyshev fit. One immediate practical advantage of either of 
these procedures over that of Moursund [7] for simultaneous approximation is the 
guarantee of uniqueness of the approximant. In the work of Meir and Sharma [6], 
constraints must be imposed to guarantee uniqueness. In addition, there are distinct 
computational advantages in obtaining best approximants when one employs either 
of these two methods, since we have at our command all of the knowledge of the 
structure of inner product spaces [4, pp. 158-197]. 

2. Basic Analysis. Let us first consider the norm 
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rb ( Ig) g2 = fb [(b - y)(y - a)] 112[g(y)]2 dy 

rb 

+ (1 - Y) [(b - y)(y - a)] 112[g'(y)]2 dy, 

where 0 < y < 1 is given. After making the linear transformation 

(2) Y = :[(b-a)x + (b + a)] 

and setting f(x) = g(y), we find that 

p1 pl 

(3) gl2 =II 1W12 = ] (I - X2)112[f(X)]2 dx + 6 J (I - X2)-1121f(X)]2 dx, 

where 6 = 4(1 - )(b- a)2. By dividing (3) by (y + 6), we transform the problem of 
finding the best fit to g in (1) by polynomials of degree at most n into one of finding the 
best fit to f by polynomials of degree at most n in the normalized form 

(4) |f1l2 = f (1 x2)112[f(x)]2 dx + (1 - f (1 X2)-112[f,(X)]2 dx, 

where 0 < ,3 < 1 is given. Once we obtain the best fit over [-1, 1] in (4), we can use 
the inverse transformation 

(5) x (2y - b - a)/(b -a) 

to obtain the best fit to g(y). To find the best fit to f in the norm (4), we develop the 
orthogonal basis of polynomials in (4). If we form the antiderivative pn(x) of the 
Chebyshev polynomial Tnl(x) = cos[(n - 1) cos-1 x], then we have [4, p. 76] 

(6) p.(x) = [T.(x)/n - T.-2(x)/(n - 2)]/2, n > 3. 

In addition, letting 

p0(x) = TO(x) = 1, 

(7) pl(x) = Tl(x)/2 = x/2, 

p2(X) = T2(x)/4 = (2x2 _ 1)/4, 

we find that the ps's form an almost orthogonal set, i.e., 

(Ps Pm) -- f X (1 - X)'pn(X)Pm(X) dx 

+ (1 -, f3)] (1 _ x2)-112p(x)p (x) dx = 
0 

unless n = m or n- ml = 2. These polynomials will be used to derive an orthogonal 

basis of polynomials. To do this, let 

PO(x) = 1, 

(8) Pl(x) = x/2, 

Pn(X) = pn(x) + anPn-2(X), n _ 2. 
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Since, for n > 4, Pn(x) must be orthogonal to pn-2(x) and the set {Pn} is an almost 
orthogonal set, we are led to a recurrence relation for the an's, namely, 

(9) an - -(pns Pn-2)/[(Pn-2) Pn-2) + an-2(Pn-2, Pn-4)], n > 4. 

To compute an, we need formulas for (ps pnf-2) and (Ps, Pn)- It can be shown directly 
that 

(P2, P2) = r(16 - 15(3/32. 

From (6) and the fact that pl(x) = Tn-(x), one sees that 

(10) (Pn, Pn-2) = -r/8(n - 2)2, n > 3, 

and that 

(1 1) (ps, Pn) = ir{(1 - A) + ([1/4n2 + 1/4(n - 2)2 1}/2. 

One also finds that a2 = 0, a = /(2 - (), and a4 = d/(16 - 15(). Using (6), (7), 
(8), and (9), one obtains, for example, when 3 = 

PO(x) = 1, 

P1 (x) = x/2, 

P2(x) = (2x2 - 1)/4, 

P3(x) = (4x3 - 5x)/6, 

P4(x) = (136x4 - 200x2 + 49)/136, 

P5(x) = (2064x5 - 3420x3 + 1265x)/1290, 

P6(x) = (37408x6 - 69936x4 + 34770X2 - 2849)/14028. 

Consider the generalized Chebyshev polynomial expansion given by 

(12) E (f, P)Pi(x)/(Pi, PA), 

where 

(13) (f, Pi) = i f (1 - x2)-112fPi dx + (1 -(3) (1 X2)-112f'P, dx 

and 

(14) bi = (P, p)-1/2 

is seen to be the normalizing coefficient for Pi. Then one finds that 

62 = (P0, P0)1, 

(15) 1= (P1, P1) 

n= [(Pns, P) + n(Pn, Pn-2)] n > 2. 

Using (5), the series (12) can now be transformed to a generalized Chebyshev expansion 
over [a, b], and the first n + 1 terms of this series give the best polynomial approx- 
imation of degree at most n to g(y) in (1). We summarize our results in the form of an 
algorithm: 
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ALGORITHM 1. To find the best approximating polynomial of a given degree n in the 
norm (1): 

1. Transform the interval [a, b] by means of (2) to the interval [- 1, 1] and set f(x) = 

g(y). 
2. Find an orthogonal basis ofpolynomials for (4) as follows: Using the integrals of the 

Chebyshev polynomials as given by (6), together with the relations (7), generate an 
orthogonal basis of polynomials by use of (8), together with (9) and the fact that a2 = 0, 
a3 = /(2- ). 

3. Form the generalized Chebyshev polynomial expansion (12), using the relations 
(13), (14), and (15). 

4. Use the inverse transformation (5) to procure the best approximation in the sense of 
norm (1). 

The second norm we shall want to consider is 

(16) 1ghl2 [g(c)] + f [(b - y)(y - a)]-1/2[g'(y)]2 dy, 

where c E [a, b]. However, let us first consider the case where c = a. Again, we make 
the linear transformation (2) and set f(x) = g(y). Then we approximate f(x) by the 
best polynomial sn(x) of degree at most n in the norm 

(17) 11fIh2 = [f(- 1)]2 + j (1 - X2)-112[f'(x)]2 dx. 

After applying (5) and defining 

tn(Y) =S-W 

we see that the relation 

lit - l Sj2 = [f(-1) - S.(_1)]2 + f (1 - X2)-112(ff - Sf)2 dX 

becomes 

rb 

1Ig - tlnil2 = [g(a) - tn(a)]2 + I(b - a)2 f [(b - y)(y - a)]-112(g' _ tf)2 dy. 

Now, since Sn(x) is the best fit to f(x), Sn(- 1) = f(- 1), and so g(a) = tn(a). Further- 
more, one sees that tn(y) is the best fit to g(y) in the norm 

fb 

(18) 1ug 12 = g2(a) + (b - a)2 [(b - a)(y - a) 112[g'(y)] dy. 

Note that the best fit in (18) is the same regardless of the constant appearing before the 
integral. To find the best fit of given maximal degree n, one simply forms the Chebyshev 
polynomial expansion of degree n - 1 to the derivative of the function, finds the 
indefinite integral of the expansion, and adjusts the constant term so that tn(a) = g(a). 
To do this, one may proceed as follows: Let 

(19) qk(x) = f Tk1(t) dt = (x2 - 1)/2, k = 2, 

- 2[Tk(x)/k - Tk-2(x)/(k - 2) + 2(- )k/k(k - 2)], k ? 3. 
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Then it is seen [4, p. 170] that 
n 

(20) Sn(x) = f(-1) + 2al(x + 1) + E aAqA(x), 
k=2 

where 

(21) - 2 f (1 _ X2)-112f'Tkl dx/i-. 
_1 

We again summarize our results in the form of an algorithm: 
ALGORITHM 2. To find the best approximating polynomial of degree n in the norm 

(18): 
1. Transform the interval [a, b] by means of (2) to the interval [-1, 1] and set f(x) = 

g(y). 
2. Form the polynomial expansion (20), using the indefinite integral (19) and the 

Fourier coefficients aA; as given by (21). 
3. Use the inverse transformation (5) to procure the best approximation in the sense 

of(18). 
To obtain the best tn subject to the condition tn(c) = g(c), one now adds to the tn 

obtained for (18) the deviation g(c) - tn(c). By so altering the constant term in tn, one 
gets the best approximant of degree n in (16). 

3. Error Bounds and Topological Properties. In order to obtain an error 
estimate for the norm (4), we shall first of all examine in more detail the structure of 
the sequence I an) as given recursively in (9). A number of properties can be established 
by mathematical induction. First of all, from (9), (10), and (11), together with the 
expressions for a2, a(3, and a,4, it follows easily by induction that Ianj < 1 for all n 
whenever 101 < 1. It also follows by induction that an is analytic in the disk I3j < 1, 
has a simple zero at fi = 0, and is strictly increasing on 0 < f3 < 1 from 0 at f3 = 0 
to 1 at 3 = 1. It is clear, in addition, that an is a rational function of f3 for every n. 
From the fact now that Ianj < 1 whenever 101 < 1 and from (9), (10), and (11), it 
follows that, for 101 < 1, a7n is asymptotic to f3/4(l - 3)n2 as n -O . It can thus be 
established that there exists a positive constant K(13) such that, whenever n ? 3 and 
0 < i < 1, 

(22) an < ? fK(Q)/4(1 - )n2. 

With this information, we can secure, in the first place, an upper bound for {Pn(x)}. 
From (6), (7), (8), and (22), one finds that, for n > 3 and 0 < f3 K 1, 

A [[n/21 /k 

IPn(x)I < 3 L 
E =1 ( n-2i+2 + p(1/n + 1/(n -2)) 

< 3([n/2D)an + 4(1/n + 1/(n - 2)) 

? dlK(fl)/6n(1 - f) + (10/n + 1/(n - 2)) 
< c0/n, 

where, for a given fi < 1, co is a constant. Also, from (6) and (8), together with the 
result above, it can be seen that 
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(23) IP.(x)l < 1(1/n + 1/(n - 2)) + dp/n3 ? K/n, 

where da is another constant which is dependent upon P. Note that, when 03 = 0, the 
series (12) becomes 

(24) I (I, pi)pi(x)/(pi, pi) = 2 E (f I pt)p/ir, 

where 

(I P") j f'(x)T-1(x)(1 -x2)-12 dx. 

This series does not seem to interpolate to f at any preassigned point of [-1, 1]. In 
contrast, see [3]. To obtain an error estimate for (12) when n terms are used, we shall 
first investigate the leading term in the remainder series, namely, (f, P.)P.(x)/(P., P.). 

We already have a bound for Pn(x). Now we must determine the behavior of 
(f, Pn) and (Pn, Pn). Suppose that f' is continuous and of bounded variation on [-1, 1]. 
Then it is well known [2] that 

1 

An 3f f(x)Tn(x)(1 - x2)1/2 dx 
-1 

is 0(1/n2) and [9, p. 24] 

=n fJ f'(x)Tn(x)(I - x2)"1/2 dx 
-1 

is 0(1/n) as n -> a. Now 

(25) (f, Pn) = (f, Pn) + an(f, Pn-2), 

and it is clear that an(f, Pn-2) 0(11/n2). Also, 

(26) (f, Pn) = fl[An/n - An-2/(n - 2)]/2 + (1 - f)Bn-l 

From the almost orthogonal property of the set {Pn}, together with (10) and (11), 
one sees that 

(27) (Pns, Pn) = (Pnm pn) + an(P., Pn-2) 

= 7r[(l - 3) + 1(1/4n2 + 1/4(n - 2)2)]/2 - iran/8(n - 2)2. 

Under our hypotheses on f and f', the bracketed term in (26) is 0(1/n3), and the re- 
maining term is 0(1/n). If, in both (25) and (27), we can neglect terms which are 
definitely 0(1/n2), we find that an (f, Pn)/(P, Pn) is given approximately by 2B-,/w, 
independent of f3, for 0 < f < 1 - E, where e > 0 is chosen a priori. In any event, 
using a line of reasoning suggested by Blum and Curtis [1], let us assume that, for a 
given f3, Iak+ll < p lakj, where k > n and p < 1. Then, letting En represent the error 
between f(x) and the first n terms of the generalized Chebyshev polynomial expansion, 
we have 

co co co 

En-< 
? I akl IPk(X)I 

? K E IakI/k ? K E IakIl/n 
k=n n n 

_ K IanI/n(1 - p) ? IBn-lI (1/n + 1/(n - 2))/(1 - p)r, 



POLYNOMIAL APPROXIMATION NEAR MINIMAX NORMS 823 

as can be seen from (23) and the above result, provided we also neglect the term 
of order l/n3 in (23). Since P'(x) is 0(1), we can, arguing in the same way, say that 
the error E' between f'(x) and the derived series truncated after n terms is bounded 
above roughly by 2 1Bn Ij/ 7r(1 - p). It is clear that, as f3 -+ 1, the approximation error, 
for a given n, will become worse, since the generalized Chebyshev expansion then 
approaches the classical Chebyshev expansion. However, if one first picks E > 0, 
then, within the interval 0 < ,3 ? 1 - e, En and E' are given essentially as indicated 
above, provided n is chosen sufficiently large. When one differentiates the classical 
Chebyshev expansion, he obtains an expansion in Chebyshev polynomials of the 
second kind [5], which may not even converge to f'(x) at the endpoints of the interval 
[-1, 1]. Bounds for the error upon using the norm (16) are of the same order of 
accuracy as for the norm (1). They can, in fact, be obtained easily from the work of 
Clenshaw and Curtis [2]. The reason for use of the norm (16) would be that one had 
a problem for which it was required that the function be duplicated at a specified 
point of the interval [a, b]. 

There is an interesting topological connection between the norm (1) and the 
norm (16). We shall, without loss of generality, assume that a = -1, b = 1. Also, 
we assume in what follows that g(x) is absolutely continuous and has a square-sum- 
mable derivative [8, pp. 165, 243]. Let 

i1 pl 

M = j g2(X)( - X2) 1/2 dx and Al = j g(x)2(1 - x2)"1/2 dx. 

It is easy to see, first of all, that there exists at least one x, say x0, in (-1, 1) such that 

g2(xo) _ 2 f g2(X)(1 2)-1/2 dX = M/2 

For, if not, then, for every x in (-1, 1), 

g2(X)( - X2)-1/2 > g2(X) > M/2 

from which, upon integrating both sides between -1 and 1, we have an immediate 
contradiction. Now 

Ps0 rzO 
g(xo) - g(c) = j g'(t) dt (I - t2)1/4(l _ t2)-1/4g'(t) dt. 

By the Schwarz inequality [4, p. 134], it follows that [g(xo) - g(c)]2 < 7rM'/2. So 

Ig(c)l ? jg(x0)j + Ig(xo) - g(c)j ? (M/2)'2 + (7rMf/2)12 

and, therefore, upon using the elementary inequality 

(28) (a + b)2 < 2a2 + 2b , 

we find 

Ig(C)12 ? M + 7rM'. 

Thus 

ig(C)12 + M' < jM/1 + (7r + 1)(1 -_ )M'/(1 -_ ). 

If then k# = max [1/fl, (7r + 1)/(1-,)], we have 
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(29) |g(C)12 + M' < k#(3M + (1 - O)M'). 

Also, 

Ig(x)l ? 0g(c) ? f g'(t) dt < Ig(c)j + (7rM'/2)1/2, 

upon applying the Schwarz inequality a second time. Thus, using (28) again, 

Al< I (Ig(c)| + (rM'/2)112]2(l _ t2)-12 dt 
-1 

? 27r[ I g(c) 12 + 7rM'/2]. 

So 

3M + (1 - 3)M' < 2'r3 Ig(c)I2 + 7r23M' + (1 -_ f)M'. 

Letting m# = max [27r,3, (7r2 _ 1)3 + 1], we have 

(30) (3M + (1 -_ )M' < m#(Ig(c)12 + M'). 

Incorporating (29) and (30) into one inequality, we have, for 0 < (3 < 1, 

(31) jg(C)12 + M' < k#(fM + (1 - 3)M') < k~m#(jg(c)12 + M'). 

This establishes a direct topological connection between the two norms. 

4. Computer Calculations. Two computer programs to find best fits over a 
given closed interval [a, b] have been written, one for each norm. In both programs, the 
fifth derivative of g(y) is assumed continuous, since Simpson's rule is used to numeri- 
cally evaluate integrals involving both the function and its derivative. The Fourier 
coefficients in each norm, namely, 

bi = (f, PI)/(Pi, P), a = 2 (1 - x2)-112f'T-1 dx/7r 

are calculated and printed. The Chebyshev series is then transformed to [a, b], the 
terms grouped, and the coefficients of the powers of y obtained are written. Lastly, 
the function and derivative deviations are printed. 

As a sample case, the function g(y) = exp(-_y2) was considered. The following 
graphs show the deviations g(y) - tn(y) and g'(y) - t'(y) over [0, 1]. Fig. 1 shows the 
results when the classical norm 

(32) 1 gil2 = 2Y 1/2(1 - y)1/2 dy 

is used subject to the constraint t4(0) = g(O). In comparison, Fig. 2 shows the devia- 
tions when the norm 

(33) 1IgI12 = g2(O) + (g)2y-1/2(1 _ y)-1/2 dy 

is employed. In this case, the constraint is the same, but is built into the norm. In 
contrast to Fig. 2, one sees in Fig. 1 a large derivative deviation near y = 0 and y = 1. 
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FIGURE 1. Best Polynomial Fit of Degree 4 to exp(-y2) over [0, 1] Using 

l jgjj l f-a g2y-1/2 (1 - y)-1/2 dy and Constraint g(O) = t4(O). 

The classical norm (32) gives a smaller deviation away from the ends of the interval, 
but the overall aspects of the fit to the derivative are better using norm (33), as can 
be seen in the second figure. Fig. 3 illustrates the case where again the classical norm 
(32) is used, but the fit is not forced to coincide with the function at y = 0. Fig. 4 
shows the results when the norm 
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FIGURE 2. Best Polynomial Fit of Degree 4 to exp(-y2) over [0, 1] Using 

i = g2(O) + fl (gf)2y"2(1 - y)In2 dy. 
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FIGURE 3. Best Polynomial Fit of Degree 4 to exp(-y2) over [0, 1] Using 

gI II2 = fr g2y-1" 2 (1 - y)-"/ 2 dy, with No Constraints. 

(34) 1 g 12 g2y-1/2(1 _ y)-1/2 dy + () f (g)2y-1/2(l _ y)-1/2 dy 

is employed. This norm is used to make both the function and derivative deviations 
small without restricting the fit to match the function at the origin. Thus it is fair to 
compare results obtained in these two cases. We see that again the derivative deviations 
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FIGURE 4. Best Polynomial Fit of Degree 4 to exp(-y2) over [0, 1] Using 

JIgI12 = 
fO 

g2y-1"2 (1 - y)-1"2 dy + (1)2 fr (g')2y-1/2 (1 - y)-1/2 dy. 



POLYNOMIAL APPROXIMATION NEAR MINIMAX NORMS 827 

for the classical norm are smaller over the central portion, but that, for the norm (34), 
they are noticeably smaller near the ends. As far as function deviations are concerned, 
the classical norm gives better results. This is to be expected, since norms (33) and (34) 
are intended to fit the function and its derivative simultaneously. Notice that there 
is very little difference between Figs. 2 and 4 except for the matching condition at tho 
left endpoint. This is in agreement with the arguments in Section 3. 
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